Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid.
نویسندگان
چکیده
Arylamine N-acetyltransferase activity has been described in various bacterial species. Bacterial N-acetyltransferases, including those from bacteria of the gut flora, may be involved in the metabolism of xenobiotics, thereby exerting physiopathological effects. We characterized these enzymes further by steady-state kinetics, time-dependent inhibition, and DNA hybridization in 40 species, mostly from the human intestinal microflora. We report for the first time N-acetyltransferase activity in 11 species of Proteobacteriaceae from seven genera: Citrobacter amalonaticus, Citrobacter farmeri, Citrobacter freundii, Klebsiella ozaenae, Klebsiella oxytoca, Klebsiella rhinoscleromatis, Morganella morganii, Serratia marcescens, Shigella flexneri, Plesiomonas shigelloides, and Vibrio cholerae. We estimated apparent kinetic parameters and found that 5-aminosalicylic acid, a compound efficient in the treatment of inflammatory bowel diseases, was acetylated with a catalytic efficiency 27 to 645 times higher than that for its isomer, 4-aminosalicylic acid. In contrast, para-aminobenzoic acid, a folate precursor in bacteria, was poorly acetylated. Of the wild-type strains studied, Pseudomonas aeruginosa was the best acetylator in terms of both substrate spectrum and catalytic efficiency. DNA hybridization with a Salmonella enterica serovar Typhimurium-derived probe suggested the presence of this enzyme in eight proteobacterial and four gram-positive species. Molecular aspects together with the kinetic data suggest distinct functional features for this class of microbial enzymes.
منابع مشابه
Polymorphism of human acetyltransferases.
Acetylation by arylamine N-acetyltransferases (NATs) is a major route in the metabolism of numerous drugs and carcinogens. Recent studies suggest that the same enzymes also catalyze N,O-transacetylation and O-acetylation. A genetic polymorphism of clinical relevance divides the human population into slow and rapid acetylators of arylamines. Two human NATs, NAT1 and NAT2, have recently been char...
متن کاملSubstrate selectivity of mouse N-acetyltransferases 1, 2, and 3 expressed in COS-1 cells.
Two human acetyl-CoA:arylamine N-acetyltransferases (NAT1 and NAT2) have been identified. Therapeutic and carcinogenic agents that are substrates for these isoenzymes (including isoniazid, sulfamethazine, p-aminobenzoic acid, 5-aminosalicyclic acid, and 2-aminofluorene) have been used to evaluate the role of the N-acetylation polymorphisms of NAT1 and NAT2 in the treatment of disease and differ...
متن کاملArylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus.
An arylamine N-acetyltransferase (NAT) responsible for the N acetylation of exogenous 3-amino-4-hydroxybenzoic acid in Streptomyces griseus was identified and characterized. This enzyme was distinct from other eukaryotic and bacterial NATs in that it acetylated various 2-aminophenol derivatives more effectively than it acetylated 5-aminosalicylic acid, and thus it may be involved in the metabol...
متن کاملArylamine N-acetyltransferases: characterization of the substrate specificities and molecular interactions of environmental arylamines with human NAT1 and NAT2.
Arylamine N-acetyltransferases (NATs) are phase II xenobiotic metabolism enzymes that catalyze the detoxification of arylamines by N-acetylation and the bioactivation of N-arylhydroxylamines by O-acetylation. Endogenous and recombinant mammalian NATs with high specific activities are difficult to obtain in substantial quantities and in a state of homogeneity. This paper describes the overexpres...
متن کاملExpression of arylamine N-acetyltransferase in human intestine.
BACKGROUND Arylamine N-acetyltransferases in humans (NAT1 and NAT2) catalyse the acetylation of arylamines including food derived heterocyclic arylamine carcinogens. Other substrates include the sulphonamide 5-aminosalicylic acid (5-ASA), which is an NAT1 specific substrate; N-acetylation of 5-ASA is a major route of metabolism. NAT1 and NAT2 are both polymorphic. AIMS To investigate NAT expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 183 11 شماره
صفحات -
تاریخ انتشار 2001